

Model Based Reliability Analysis

THTH SPRING WEBINAR 2023 MIIKKA TAMMI

2 2023-05-24 MODEL BASED RELIABILITY ANALYSIS

Miikka Tammi

- Tampere University of Technology: M.Sc.
 - 2004
 - Information Technology
- Artekus Oy: Software designer
 - 2004-2006
 - Development of reliability tools
- Ramentor Oy: Manager, Products and Projects
 - 2006-2020
 - Reliability and risk analysis projects to various targets

— AFRY: Senior Reliability Expert

- 2020-
- Reliability and risk analysis projects to various targets
- Comments and questions:
 - miikka.tammi@afry.com, 040-5341117

Background – AFRY

- AFRY is a European leader in sustainable engineering, design, and advisory with a global reach.
 - 19 000 employees globally (3 000 employees in Finland)
 - Offices in >40 countries (~30 locations in Finland), projects in >100 countries
 - Net sales of approx. 2.2 billion euros
- In 2019 ÅF and Pöyry joined forces and launched a new brand, AFRY.
- Mission: We accelerate the transition towards a sustainable society.
- We are devoted experts in industry, energy and infrastructure sectors, creating impact for generations to come.

4 2023-05-24 MODEL BASED RELIABILITY ANALYSIS

Providing leading solutions for generations to come – Making Future

Our offerings in six divisions

INFRASTRUCTURE

Real estate Rail & Road Architecture Environment Water

INDUSTRIAL & DIGITAL SOLUTIONS

Food & Life Science Product and Software Design Automation Defense

PROCESS INDUSTRIES

Pulp, Board, paper & tissue Biorefining Chemicals Mining & Metals Batteries Textiles Power-to-X

ENERGY

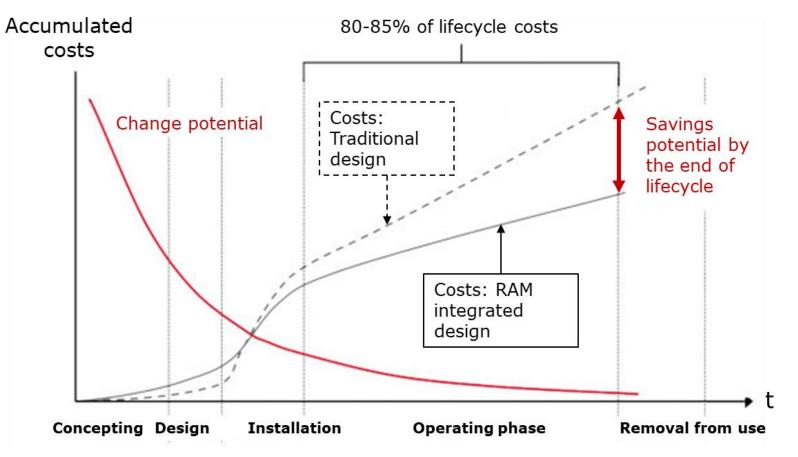
Hydro Renewables Nuclear Transmission & Distribution

AFRY X

Bioindustry Clean Energy Forestry Infrastructure Real estate

MANAGEMENT CONSULTING

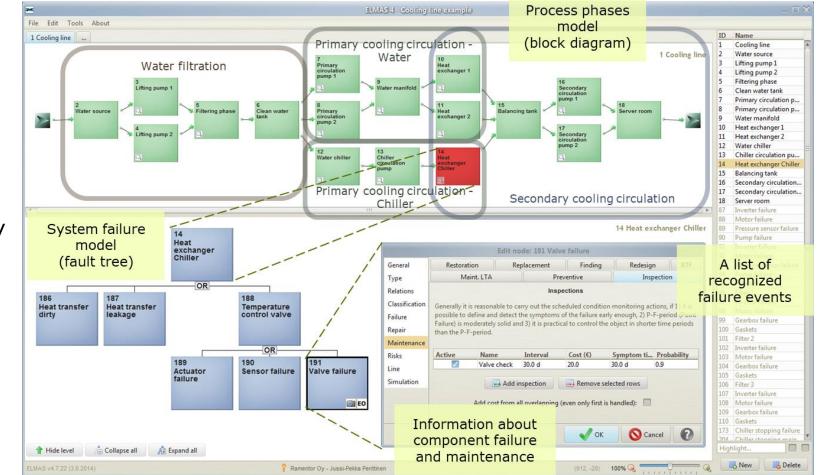
Bioindustry Energy Capital Industry



MODEL BASED RELIABILITY ANALYSIS

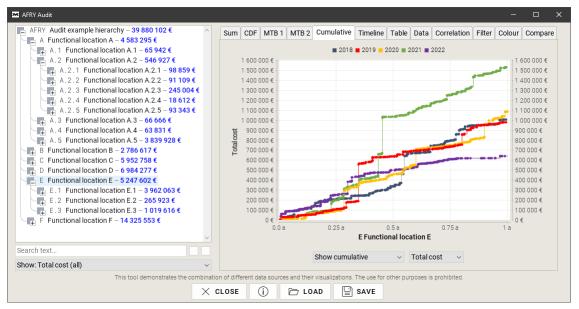
Design for RAM

RAM stands for
 Reliability, Availability
 and Maintainability

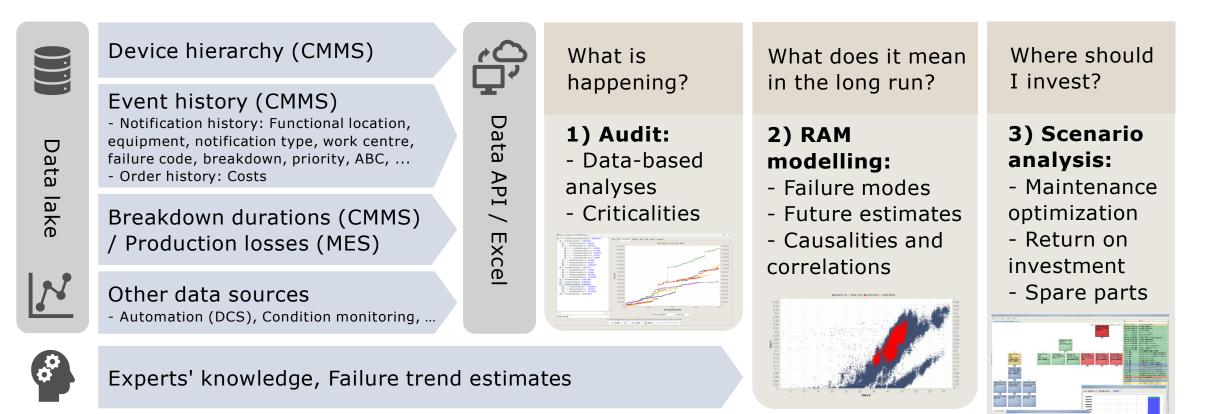

- Majority of RAM related decisions have a big effect on lifecycle costs of the system
- The earlier RAM can be affected, the bigger the potential for lifecycle savings will be

Model based reliability and RAM analysis

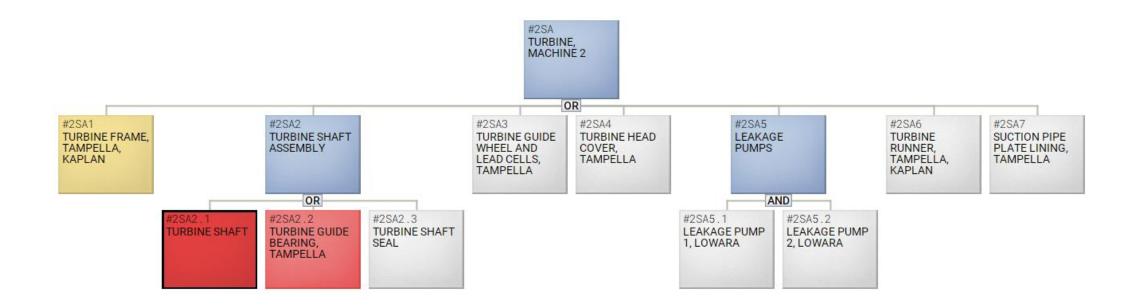
- Model based RAM analysis is introduced in five parts
 - Simple analysis models based on device hierarchy and history data
 - Modelling of failure modes, causalities and future estimated
 - Scenario analysis
 - RAM analysis at design phase
 - Analysis of complex systems



History Data Audit


- A tool for understanding history data
- Combines and visualizes data from
 - event history (CMMS)
 - automation systems (DCS)
 - manufacturing process (MES)
 - condition monitoring
 - etc.
- Various analysis perspectives turn the data into knowledge that supports decision making
- Helps to identify trends in history data and creates TOP listings

AFRY Audit example hierarchy – 39 880 102 € ∧ A Functional location A – 4 583 295 €	Sum (DF MTB 1	MTB 2 C	umulative Time	eline Table	Data Correlat	ion Filter Col	our Compare
A Functional location A – 4 583 295 € A.1 Functional location A.1 – 65 942 €		C	ategory 1	 Add new of 	category 🗸	Show: Sum	table v	
A.2 Functional location A.2 – 546 927 € A.3 Functional location A.3 – 66 666 €	Categor	y 1 - Count	Count [%]	Material cost	. Work cost	Sub contra	Total cost [€]	Total cost [%]
+ A.4 Functional location A.4 – 63 831 €	*	21 678	100%	8 677 532	6 174 748	25 027 823	39 880 102	100
A.5 Functional location A.5 – 3 839 928 €	F	4 1 3 9	19.1%	1 763 397	7 1 187 567	4 489 122	7 440 085	18.7
B Functional location B – 2 786 617 €	A	3 926	18.1%	1 427 193	1 087 548	5 1 5 4 4 0 8	7 669 149	19.2
C Functional location C – 5 952 758 €	С	3 649	16.8%	1 347 602	1 068 475	4 454 052	6 870 129	17.2
D Functional location D – 6 984 277 €	D	2 664	12.3%	1 074 612	690 626	3 081 847	4 847 085	12.2
E Functional location E – 5 247 602 €	E	2 385	11.0%	937 904	657 888	2 909 022	4 504 814	11.3
F Functional location F – 14 325 553 €	G	2 263	10.4%	828 882	759 328	2 012 302	3 600 513	9.03
Search text	В	1 776	8.19%	892 313	467 713	2 094 423	3 454 450	8.66
	н	876	4.04%	405 629	255 603	832 647	1 493 878	3.75
Show: Total cost (all) ~								
This tool demonstrates the com	bination of dif	ferent data sou	rces and their	r visualizations. Th	e use for other p	ourposes is prohil	pited.	


1) Audit → 2) Modelling → 3) Scenarios

Potential investments, big repairs and other scenarios

Scenario analysis example: Turbine Machine

MODEL BASED RELIABILITY ANALYSIS

History data: Cumulative failures and costs

					≍ Simulatio	on: Basic					×	🕶 Failures					>
					Profile	Availability	Unreliability Mean times	Studied period			C	Cumulative	Distributi	on Stack			
					Tasks Simulation Basic		Failures dur Studied time period: 7	ing studied pe	riod		8	3 7 5					
					Conditional	ID	Name		Failed ti	me Failu	ires	5					
					Importance Risks	#2SA #2SA1 #2SA2	TURBINE, MACHINE 2 TURBINE FRAME, TAMPELLA, KA TURBINE SHAFT ASSEMBLY	APLAN	0 s 0 s 0 s	8.0 5.0 3.0		1 3					
					Risks 2 Line	#2SA3 #2SA4 #2SA5	TURBINE GUIDE WHEEL AND LE TURBINE HEAD COVER, TAMPE LEAKAGE PUMPS	-	A 0 s 0 s 0 s	0.0 0.0 0.0		2					
≍ Simulation	: Basic				Quantion		🗙 💌 Total risk				×	014 2015	2016 20	17 2018	2019 20	20 202	21
Profile	Entity risks	Node risks Subt	ree risks	Relative r	isks LCC (Comb.risks	Cumulative Distribution	n Stack				#2SA TURB	·				
Tasks	- F	Ris	sks of t	he entity			160000				160000	#2SA1 TUR #2SA2 TUR		·	r		
Simulation Basic		Studied time period					140000				140000 120000			⊞ Sh	ow graph	plots	ĸ ⊮
Conditional	Т	otal risk:	164 6	00		€	100000				100000						_
Importance		Type of risk			Risk [€]		80000				80000						
Risks	Work cost (Co	rrective maintenance	e)	550			60000				60000						
Risks 2		t (Corrective mainter		2 000			40000			-	40000						
Line	,	eventive maintenance t (Preventive mainte	,	15 650 2 400			20000			_	20000						
Overview	Loss of produc			144 000			2014 2015 20	016 2017 2018	2019 2	2020 202	1						
		BASED RELIABILITY ANALYS					 Work cost (Corrective main Work cost (Preventive main Loss of production 							ƙ		FR	ינ

ÅF PÖYRY

Failure and cost estimations for future

		🐱 Edit nod	e: #2SA2.1 TURBINE SHAFT					×	≍ Time to failu	re		×
		General Type Relations	Time to failure	Tir	ne to failur	e		_	100% 90% 80%			90% 80%
		Failure Repair				t most (95%) 🗸		_	70%			70%
		Actions Risks	Est Mean time to fai		At least (5%), 40.0	At most (95%)	a v		60% 50%			60%
		Line	Time to failure a		10.0		a ~ a ~		40%			40%
		Simulation	Time to failure a	n most (93%).	70.0		a ~		20%			
e:	#2SA2.1 TURBINE SHAFT Break Downtime Re	pair start Repair	time Sequence Ot	her costs F	Resource cos	ts Spare parts			0% 10	a 20a 30a 40a	50 a 60 a	0%
			ume ocquence ou		quence	is spare parts				Mean: 40 a Dev: 18	a 347 d	■23
	Work cost (Corrective S	Spare part cost (Corr.	. Work cost (Preventiv	. Spare part o	ost (Preven	Loss of production	on [€]	C	omments	Work category		
	13 500.0 5	500.0	0.0	0.0		240 000.0		downtim		Corrective maintenan	ce	
	250.0 2	200.0	0.0	0.0		220 000.0		downtim		Corrective maintenan	ce	
	0.0 0	0.0	1 200.0	400.0		0.0	advance		etected in	Preventive maintenan	ce	
	12 000.0 5	500.0	0.0	0.0		260 000.0		downtim	ed failure, e 130h	Corrective maintenan	ce	

Z

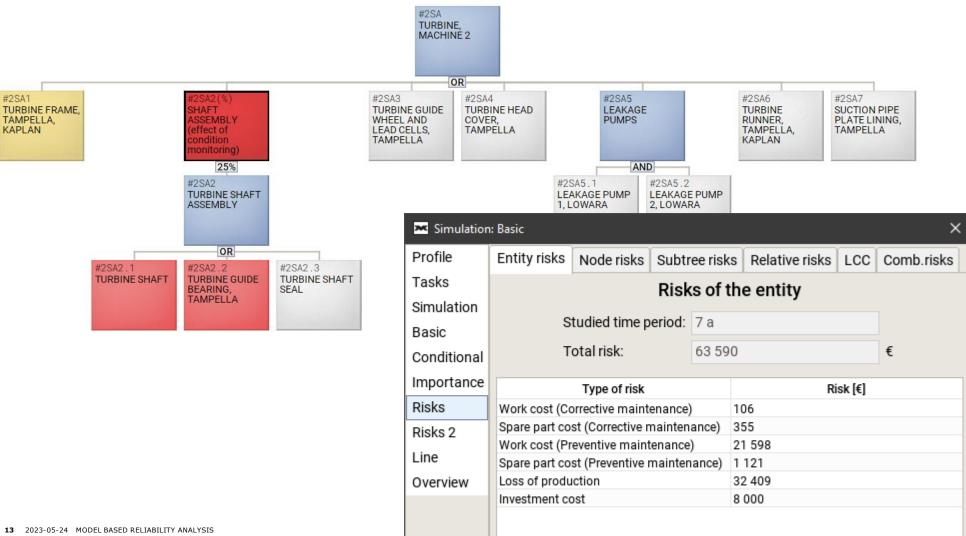
Keit node: #2SA2.1

General

Relations

Failure

Repair


Actions Risks

Simulation

Line

Туре

Improvement actions and new simulation

RAM modeling and analysis at design phase

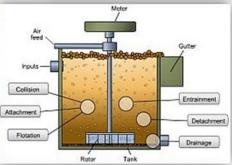
 RAM modeling and analysis at design phase is done based on design documentation, expert knowledge and generic failure databases

- Advantages of design for RAM

- Possibility to significantly improve system availability and reliability
- Provides an estimate for expected system availability and reliability
- Calculates how different improvement actions affect system availability
- Verifies design plan from maintenance point of view
- Helps to understanding and acknowledging the remaining biggest risk factors
- Small work efforts have potential to make huge savings during lifecycle

Modeling and analysis of complex systems

Complex System M	RCM Analysis					
Phase 1 Creating the System Failure Model	Phase 2 Definition of the Critical Equipment	Phase 3 Development of an Action Plan				
System failure model describes cause- consequence relations of equipment failures and system level affects to operation and costs	Defining and selecting of critical equipment is possible based on the system failure model and simulation results	Defining applicable and cost effective actions for the critical equipment minority based on Reliability Centred Maintenance (RCM) methodology				
Modelling and Simulation	RAM Results	Action Planning				
 Modelling complex systems Simulating system operation during it's life cycle 	 Achieving results concerning system availability, equipment criticalities, cost risks etc 	 Updating and creating RCM-based maintenance action plans 				
<complex-block></complex-block>	Image: Note of the section of the s	Security Control of the control of				


Advantages of continuous RAM development

- Possibility to improve system availability and reliability
- Understanding which factors lowers availability and reliability the most
- Finding out how different improvement actions can improve system availability
- Allows focusing maintenance resources to the right targets
- Possibility to optimize system maintenance supportability
- Better understanding on system risk factors and how to prepare for them

- Flotation process
 - Six processing tanks
 - Installed in series
 - Forming three tank pair units
- Goal of process
 - Recover metal particles from the slurry flowing through the tanks
 - with the help of rising air bubbles from the bottom of the processing tank

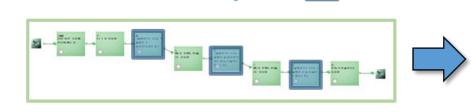
- The main goals of the project were:
 - 1) Determine the availability and OEE of the analyzed process line
 - 2) Locate critical failure modes for the line operation
 - 3) Create methods for increasing the OEE value of the process
- Project team (Experts from Ramentor and client) created a model
 - All mechanical and automation components included
 - Components of processing tanks and supporting systems included
 - Also process and user-related faults included
- Overall equipment effectiveness (OEE)
 - In addition to availability also performance (and quality) included

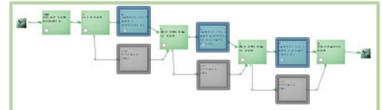
- The **flow characteristics** model of the flotation process 0 was combined with extensive fault tree analytics
- 600 nodes
- 200 failure modes

- The failure events slowing down the production had a major effect on the line OEE value (High availability, Low OEE)
 - Failures stopping the production caused **30%** of the total loss
 - Failures slowing down the process **70%** of the total loss

Focus on the situations slowing down the process

 About 10% of the failure modes caused over 83% of the total lost production


Focus on the highest impact failure modes



- The effect of maintenance bypass lines installation shown
 - Direct the process flow around when a tank pair on repair

Tank pairs 🔄 Maintenance bypass lines 📃

- Only minor slowing down for the process during bypass

- MPL manufacturer can justify the investment to customer
 - Lost production decreases by millions of euros during 10 years
 - The installation is quite inexpensive -> Very good investment!

Questions or Comments?

Making Future

